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Abstract

Hippocrates of Chios, active during the later fifth century BCE, is stated in
Proclos’s “catalogue of geometers” to have been the first writer of elements, and
is also known to have worked on the squaring of “lunes”, plane figures contained
by a convex and a concave circular arc. Customarily this is taken to mean that
he wrote a book in the axiomatic style of Euclid’s Elements, and a Euclidean
reading of the text on lunules has been used to produce a list of such Euclidean
propositions as must already have been in Hippocrates’s Elements.

The present article, analyzing Hippocrates’s procedures closely, makes the
observation that little or nothing of what Hippocrates makes use of had not been
known and used in practical geometry, in part for more than a millennium, in
part for at least a century. It suggests that Hippocrates’s argumentation, instead
of being rooted in an axiomatic system, was based on the “locally obvious”, such
knowledge as his audience would be familiar with and could be supposed to
accept as evident. His “elements”, far from being an axiomatic system, would
be a list of such locally obvious techniques and insights.

We know Hippocrates’s work on lunes from Simplicios’s sixth-century
commentary to Aristotle’s Physics. Simplicios proposes two versions, first a report
of what Alexander of Aphrodisias had told in his commentary to the same work
and passage, next (as he claims) the description of the work that Eudemos had
offered, adding only Euclidean proofs where he supposes Eudemos has omitted
them. Comparison of the two show that they are both genuine, none of them
derived from the other. It is suggested that Alexander draws on Hippocrates’s
teaching, being based either on lecture notes of his or on students’ notes; the
Eudemos-version may instead go back to what Hippocrates published more
officially.
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I. How – and what – do we know?

The earliest Greek mathematician from whose hand we possess at least an
edited version of an original work is Hippocrates of Chios. A widely used general
history of mathematics characterizes him as “the most famous mathematician
of his century” (namely the fifth century BCE) [Kline 1972: 40]. Thomas Heath,
in his History of Greek Mathematics, generally well-based on sources, after reporting
Iamblichos’s story about an anonymous Pythagorean who had lost his property
and therefore was allowed to teach geometry for money, and combining it with
two partially discordant stories about how Hippocrates lost his wealth, feels it
to be a fair conclusion [Heath 1921: 22] that

Hippocrates of Chios, the first writer of Elements, who also made himself famous
by his quadrature of lunes, his reduction of the duplication of the cube to the
problem of finding two mean proportionals, and his proof that the areas of circles
are in the ratio of the squares on their diameters, also taught for money, and
for a like reason.

So, Hippocrates wrote the first collection of Elements, taught (geometry, it seems
from the context) – and did so for money. In any case according to Heath.

Before we ask about the sources that concern Hippocrates’s mathematics
and his mathematical activity, we may regard those for his loss of fortune. One
version comes from Philoponos’s commentary to Aristotle’s Physics 185a16 [ed.
trans. Osborne 2006: 51]:

Hippocrates was a merchant of Chios, who was a victim of piracy and lost
everything. He travelled to Athens to bring a case against the pirates and while
he was staying in Athens, for a long time on account of the court case, he
attended philosophy classes, and reached such a high standard in geometry that
he attempted to discover the quadrature of the circle.

This was written almost a millennium after the supposed event. Aristotle, at a
century’s distance only, has this offhand remark (Ethica Eudemia 1247a17–20, trans.
[Simpson 2013: 179]):

Hippocrates was clearly a geometrician but in other matters he seemed stupid
and foolish and while on a sea voyage lost much gold coin, because of his
simplicity so they say, to the collectors of the 2 percent customs duty at
Byzantium.

“... as we are told” – that is, we have to do with an anecdote, whose veracity
it is impossible to judge from the versions quoted after a century’s oral circulation
(not to speak of Philoponos’s version with its impossible idea of fighting pirates
in court, probably picked from some florilegium). It may as well have been
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invented ex nihilo by somebody wanting to denigrate Hippocrates as an unreliable
fool as being based on facts. Absent from Aristotle’s account, we observe, is the
idea that Hippocrates should have learned his geometry in Athens. Since he
shares his homeland Chios with the slightly older Oinopides (on whom
repeatedly below), the existence of an adequate environment there for learning
geometry is quite plausible – Paul Tannery [1887: 109] (followed in many more
words but with no more solid arguments by Maria Timpanaro Cardini [2010:
231]) doubts that there were at the times schools of the type in Athens, and
instead believes Hippocrates to have been a student of Oinopides and then have
started teaching what he had learned in Athens.

As to Hippocrates’s teaching, what do we really know? The only hint in the
sources that he taught is a passage in Aristotle’s Meteorology[1] stating that “those
around Hippocrates and his disciple Aischylos” shared the opinion of the
Pythagoreans concerning the nature of comets – namely that they are to be
counted among the planets. However, since Aristotle is able to give a detailed
account of Hippocrates’s doctrine, we are on much safer ground when accepting
Hippocrates as a teacher of astronomy.

Hippocrates’s writing of the first collection of Elements obviously supports
the assumption that he taught geometry too – but how, and what, do we know
about these Elements?

Our source is Proclos (Commentary to Elements I, 66.4–8,[2] trans. [Morrow
1970: 54]):

Following [Oinopides of Chios and Anaxagoras came] Hippocrates of Chios,
who invented the method of squaring lunules, and Theodorus of Cyrene became
eminent in geometry. For Hippocrates wrote a book on elements,[3] the first

1 My translation (as all translations with no identified translator in the following) from
[Bekker 1831: 342b36–343a1]. “Those around” was the standard way to refer to the circle
of those who studied with a philosopher or similar teacher. For some reason, [Webster
1931] (followed by the revised version in [Barnes 1984]) as well as [Lee 1952] omit “those
around”, thus removing the only [kind of] evidence for Hippocrates having been a regular
teacher (Lee has it in his Greek text, showing that he did not suspect the words to be
interpolated).

In 344b15, “those around Hippocrates” are mentioned again, still in connection with
their opinion about comets; this time Lee translates “the school of Hippocrates”.

2 Here and everywhere in the following, my references to the Commentary point to page
and line in the Greek text in [Friedlein 1873].

3 “Wrote a book on elements” translates στοιχεια συνεγραψεν. Συγγραφω may mean
“compose a writing or a work in writing” (thus [GEL]) and is likely to do so in the present
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of whom we have any record who did so.

Proclos is almost as late as Philoponos, but his source (for this as well as for the
whole so-called “catalogue of geometers” covering the period before Euclid) was
once supposed to be Eudemos’s history of geometry, written in the late fourth
century BCE.[4] Strong arguments, however, speak against direct use of Eudemos’s
work.

Firstly, there is the question whether Eudemos’s work was at all at hand
in Proclos’s time; Paul Tannery [1912/1883: 345] claimed that all quotations from
Eudemos postdating the fourth century are indirect – inasfar as concerned with
his history of geometry mostly derived from a compilation produced by Sporos
of Nicaea toward the end of the third century. In particular Tannery asserted
that Proclos only knew Eudemos through Geminos or Porphyry.

Heiberg [1884: 345], followed by Ivor Bulmer-Thomas [1971: 463], objected
that Simplicios and Eutocios speak (in other connections, to one of which we
shall return) of using Eudemos in such words that they must have possessed
the original and not an epitome or abridgment. Heiberg and Bulmer-Thomas
are therefore convinced that Eudemos’s history was still accessible at least to
these two in the early sixth century. Personally I find that argument less than
convincing; not a few colleagues in recent times refer to work they only know
indirectly or through later editions as if they were using the original
publication.[5] Moreover, if writing in an environment where it was known that
only an epitome had survived, it would not even be venial sin to omit that
information – Simplicios and Eutocios were writing for their own public, not
for historians of the 19th or 21st century.[6]

context. That he wrote a book is thus a likely interpretation; but noteworthy is the
indefinite στοιχεια, precisely rendered by Morrow. Proclos does not say that Hippocrates
wrote “the first Elements”, as inherent in Heath’s italicization in “first writer of Elements”.

4 Thus [Cantor 1880: 113], repeated verbatim in the second and third edition – “a fragment
of Eudemos, or at least an extract from his historical-geometrical writings”. The list of
names goes on until Philip of Mende, a student of Plato, and then jumps to Euclid, where
Proclos has to construct information as best he can (cf. quotation on p. 4). The only writer
on the history of geometry or mathematics whom we know about and who would know
about Philip of Mende and not about Euclid is Eudemos. Cf. [Sachs 1917: 24].
5 I shall abstain from naming the estimated colleague who has used my own work in a
similar way.

6 Who objects to unreserved references to Apollonios’s Conics or Diophantos’s Arithmetic,
even though nobody has seen the complete texts for a thousand years? We all know that
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Be that as it may, since a century there seems to be full agreement that
Proclos’s “Eudemian summary” or “catalogue of geometers” – from which comes
the information that Hippocrates produced the first book about elements – cannot
come from Eudemos’s hand. As formulated by Thomas Heath [1921: I, 118],

a perusal of the summary itself is sufficient to show that it cannot have been
written by Eudemus; the most that can be said is that, down to a certain sentence,
it was probably based, more or less directly, upon data appearing in Eudemus’s
History. At the sentence in question there is a break in the narrative, as follows:

Those who have compiled histories bring the development of this
science up to this point. Not much younger than these is Euclid, who
put together the Elements, collecting many of the theorems of Eudoxus,
perfecting many others by Theaetetus, and bringing to irrefragable
demonstration the propositions which had only been somewhat loosely
proved by his predecessors.
Since Euclid was later than Eudemus, it is impossible that Eudemus can

have written this; while the description “those who have compiled histories”,
and who by implication were a little older than Euclid, suits Eudemus excellently.
Yet the style of the summary after the break does not show any such change
from that of the earlier portion as to suggest different authorship.

This argument, though less fully, is repeated by Ivor Bulmer-Thomas [1971:
463]. Already Gustav Junge [1907], though his main concern had been the
Proclean passage that ascribes the discovery of the theory of the irrational to
Pythagoras, had given strong arguments that Proclos’s catalogue of geometers,
though ultimately and in the main going back to Eudemos, is strongly redacted
and contaminated, if not by Proclos himself then by somebody living centuries
after Eudemos as well as Euclid.

That raises another question – did Hippocrates himself speak of “elements”,
and if so, what did that mean to him and his contemporaries? The term fits a
derivation from the use of στοιχειον for a letter as member of the alphabet (thus
not referring to the letters of a running text, for which γραµµα is used) – cf.
[Burkert 1959: 170]. In his commentary to Euclid’s work, Proclos explains
(72.23–73.12, ed. trans. [Morrow 1970: 59f]), paraphrasing and at least in the end

what exist are incomplete survivals, so why repeat?
As a parallel outside mathematics and its history, think of this fragment of a footnote

in [Gadamer 1990: 70]:
In der wohl zuletzt geschriebenen Einleitung zu seiner Schleiermacherbiographie
gebraucht Dilthey oft »Erlebnis«. Vgl. Ges. Schriften Bd. 13, 1, S. XXXV-XLV.

Any student of mine would have been told (kindly but emphatically) to make a decent
reference. But Hans-Georg Gadamer wrote for colleagues who all had Dilthey’s Gesammelte

Schriften in their institute library if not in their office.

- 4 -



expanding Plato’s younger contemporary Menaichmos:

The term “element,” however, can be used in two senses, as Menaechmus tells
us. For what proves is called an element of what is proved by it; thus in Euclid
the first theorem is an element of the second, and the fourth of the fifth. [...] An
element so regarded is a kind of lemma. But in another sense “element” means
a simpler part into which a compound can be analyzed. In this sense not
everything can be called an element of anything [that follows from it], but only
the more primary members of an argument leading to a conclusion, as postulates
are elements of theorems. This is the sense of “element” that determines the
arrangement of the elements in Euclid’s work, some of them being elements of
plane geometry, and some elements of stereometry.

Burkert [1959: 192] gets out of this that in this second sense elements (στοιχεια)
are the postulates, and that this is the meaning of Euclid’s title. He couples this
to a derivation of the word not from the use about letters but from an underlying
verb στοιχεω, “to stand orderly” (etc.). As he continues, “the essence of
mathematics, as it was discovered by the Greeks, consists in its propositions
forming an uninterrupted logical system” (einen lückenlosen logischen

Zusammenhang). He still knows of no proof that Hippocrates already spoke of
his own work as Στοιχεια, but “since it was comparable to Euclid’s Στοιχεια,
if not in realization then at least in conception, what other designation could
he have given to it?

Apart from presenting a complete misreading of Proclos’s text, Burkert here
offers an only slightly veiled case of circular reasoning – “since Hippocrates’s
work was Greek and therefore at least in aspiration axiomatic just as that of
Euclid, it carried the same name, and therefore constituted an uninterrupted
logical system”. Worse, perhaps, Burkert overlooks that the notion of “postulates”
as a coherent group (as they are in Euclid’s Elements, and as asked for by
Burkert’s understanding) is post-Aristotelian.

Aristotle does not know the concept in general, but he is aware of Euclid’s
Postulate II – that can be seen in Physica 207b29–31 (trans. Hardie & Gaye in
[Aristotle, Works, II]):

[mathematicians] do not need the infinite and do not use it. They postulate only
that the finite straight line may be produced as far as they wish.

Moreover, Aristotle is explicitly aware of the need for something like Postulate
V. In Analytica priora 64b38–65a7 (ed. trans. Tredennick in [Cook & Tredennick
1938: 486f], where a problem about parallels serves to exemplify circular
reasoning, the way out is stated to take as an axiom [αξιοω] the proposition one
wants to but cannot prove. The fifth postulate thus had not yet been formulated
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although Aristotle recognizes the dilemma; moreover, the verb used is not αιτεω,
“to request” (from which αιτηµα, conventionally translated “postulate”).

All in all, we may reasonably conclude that Hippocrates produced a collection
of basic propositions that might serve to prove others or make more advanced
constructions, and probably put them together in some kind of book. At least
in later times this collection was recognized as belonging to the same genre as
Euclid’s Elements. We have no means to discover, however, whether Hippocrates
himself spoke of στοιχεια, “elements” nor – much more interesting – whether
this collection was already built at least ideally as an axiomatic structure.[7]

Very often, historians have followed Aristotle’s advice (not meant by Aristotle
for such cases) and presupposed what they want to prove as an axiom. As an
historian with an Aristotelian bent, I shall try instead to see what thought and
second thoughts about available evidence allows us to infer. That is the topic
of part II.

II. Hippocrates’s lunes, and what they tell us

Our source for Hippocrates’s lunes in Simplicios’s sixth-century (CE)
commentary to Aristotle’s Physics. Simplicios, on the other hand, reports from
two sources – Alexander of Aphrodisias (writing ca 200 CE), and Eudemos (with
the already-mentioned proviso that he may know the latter from a secondary
compilation or abridgement only – a proviso I shall not repeat but ask the reader
to keep in mind).

Since Alexander is only reported by Simplicios, not quoted, most of those
who discuss the text do not translate Simplicios’s words but restrict themselves
to secondary reporting. Simplicios’s full report from Alexander is evidently found
in [Diels 1882], but my Greek is insufficient to make use of this critical edition.
I therefore reproduce the English translation given by George Allman [1889: 67f]
(on its part based on [Bretschneider 1870: 103–105] as well as the Diels edition);

7 Reviel Netz [2004: 276], deliberately “minimalist”, is even more radical in his doubts:
Proclos’s reference to Hippocrates’s Elements

may be interpreted to mean that Hippocrates wrote an early version of Euclid’s
Elements. However this could also mean that Hippocrates was the first to write
down proofs for propositions which Eudemus considered as part of the subject-
matter of “Elements”. Perhaps even: no more than the first to enunciate some
such propositions

– assuming, as Netz then points out in a footnote, “that the word “Elements” entered
the Proclean summary from Eudemus, and was not Proclus’ own interpretation of
Eudemus”.

- 6 -



I also borrow Allman’s diagrams, based on those of Diels, while the section
labelling is mine:

A Let a semicircle αβγ be described on the straight line αβ; bisect αβ in δ; from
the point δ draw a perpendicular δγ to αβ, and join αγ; this will be the side of
the square inscribed in the circle of which αβγ is the semicircle. On αγ describe
the semicircle αεγ. Now since the square on αβ is equal to double the square
on αγ (and since the squares on the diameters are to each other as the respective
circles or semicircles), the semicircle αγβ is double the semicircle αεγ. The
quadrant αγδ is, therefore, equal to the semicircle αεγ. Take away the common

segment lying between the circumference αγ and the side of the square; then
the remaining lune αεγ will be equal to the triangle αηγδ; but this triangle is equal
to a square. Having thus shown that the lune can be squared, Hippocrates next
tries, by means of the preceding demonstration, to square the circle thus:—

B Let there be a straight line αβ, and let a semicircle be described on it; take
γδ double of αβ, and on it also describe a semicircle; and let the sides of a
hexagon, γε, εζ, and ζδ be inscribed in it. On these sides describe the semicircles
γηε, εθζ, ζκδ. Then each of these semicircles described on the sides of the hexagon
is equal to the semicircle on αβ, for αβ is equal to each side of the hexagon. The
four semicircles are equal to each other, and together are then four times the
semicircle on αβ. But the semicircle on γδ is also four times that on αβ. The
semicircle on γδ is, therefore, equal to the four semicircles – that on αβ, together
with the three semicircles on the sides of the hexagon. Take away from the
semicircles on the sides of the hexagon, and from that on γδ, the common

segments contained by the sides of the hexagon and the periphery of the
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semicircle γδ; the remaining lunes γηε, εθζ, and ζκδ, together with the semicircle
on αβ, will be equal to the trapezium γε, εζ, ζδ. If we now take away from the
trapezium the excess, that is a surface equal to the lunes (for it has been shown
that there exists a rectilineal figure equal to a lune), we shall obtain a remainder
equal to the semicircle αβ ; we double this rectilineal figure which remains, and
construct a square equal to it. That square will be equal to the circle of which
αβ is the diameter, and thus the circle has been squared.

The treatment of the problem is indeed ingenious; but the wrong conclusion
arises from assuming that as demonstrated generally which is not so; for not
every lune has been shown to be squared, but only that which stands over the
side of the square inscribed in the circle; but the lunes in question stand over
the sides of the inscribed hexagon. The above proof, therefore, which pretends
to have squared the circle by means of lunes, is defective, and not conclusive,
on account of the false-drawn figure (ψευδογραφηµα) which occurs in it.

Firstly, Alexander is obviously right that the squaring of the circle is fallacious,
exactly for the reason given.[8] There is widespread agreement that Hippocrates
cannot be responsible for the mistake – in the words of Heath [1921: I, 187], “It
is evident that this account does not represent Hippocrates’s own argument, for
he would not have been capable of committing so obvious an error”.´

But whether this is the fallacy hinted at in the Aristotelian passage which
Simplicios discusses is not at all certain, cf. [Lloyd 1987]. Since this question does
not touch at what we are doing here, there is not reason to elaborate.

Secondly, let us probe what Hippocrates bases his argument on (his
“elements”, in Proclos’s/Menaichmos’s first sense). In section (A), the only appeal
to preceding knowledge is found in the passage

Now since the square on αβ is equal to double the square on αγ (and since the
squares on the diameters are to each other as the respective circles or semicircles),
the semicircle αγβ is double the semicircle αεγ.

On one hand, this makes use of the “Pythagorean rule” as applied to the diagonal
of a square; on the other of the proportionality of circular and semicircular areas
to the square on the diameter. Both principles had been known by Near Eastern
practical geometers at least since the beginning of the second millennium BCE –
both of them in the general cases of, respectively, rectangles with any ratio
between the sides and areas of any kind if only similar.[9] Beyond that, the proof

8 Lloyd [1987: 126 and passim] strongly doubts that Alexander should have attributed any
fallacy of Hippocrates, and supposed this to be a disingenuous interpretation on the part
of Simplicios. However, a passage in Themistios’s fourth-century paraphrase of the Physics

[ed., trans. Todd 2012: 126], clearly based on Alexander’s commentary, albeit somewhat
damaged in the manuscript, confirms Simplicios’s reading.

9 The “Pythagorean rule” in general terms is quoted in the text Db2-146 from ca 1775 BCE,
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makes use of what we may call the arithmetic of areas (additivity and
subtractivity), something not even Euclid considered worth arguing for
specifically but just included in his Common Notions 2 and 3 (“If equals be added
to equals, the wholes are equal”, etc.),[10] and without which it is difficult to
give any meaning to area measurement. Finally, it is taken for granted that a
line can be bisected and that a perpendicular can be raised (spoken of separately,
but together the two amount to the producing a perpendicular bisector); how
to do this with ruler and compass was a fairly recent discovery of Oinopides.[11]

It is far from certain, however, that Hippocrates thought of Oinopides’s
construction; if he did so he would know that in order to bisect αβ he already
needed to construct the perpendicular bisector. He may well have had older
(practitioners’) methods in mind, where (e.g.) halving is produced by means of
a string that is folded, and the perpendicular drawn by means of a set square.

Section (B) begins by performing a construction, in which it is presupposed
that the side of a regular hexagon equals the semidiameter of the circumscribed
circle. This was also old knowledge – see (for example) a Susa tablet of Old
Babylonian date in [Bruins & Rutten 1961: 24 and pl. 2], and a Mycenaean gold
roundel from 1500–1550 BCE in [Høyrup 2000: 30], conspicuously revealing the
traces of being compass-produced; the decoration of a small box from the same
place, perhaps one generation earlier, shows how this elementary geometrical
fact will be obvious to anybody playing with a compass drawing multiple
adjacent circles (ibid. p. 32). As we see, the principle is taken for granted, its use
is not even made explicit.

The proportionality of semicircular areas to the square on the diameter (as

see [Høyrup 2002: 261]; the proportionality of areas (also circles and their parts) to the
square of a characteristic linear dimension is the basis for the geometric section of tables
of technical constants going together with the sexagesimal place-value-system since the
outgoing third millennium. For the coefficients, see for example [Robson 1999: 34–56].

10 Here as in the following, quotations from the Elements in translation are taken from
[Heath 1926], but checked in [Heiberg 1883].

11 Our source for this is Proclos’s Commentary 283.7–10, trans. [Morrow 1970: 220f]. Since
Proclos is able to relate that Oinopides spoke of the perpendicular as a “line drawn
gnomonwise” (while his “catalogue of geometers” offers no such precise information),
we can probably trust the ascription.

Proclos speaks of Oinopides only in relation to the Euclidean construction of a
perpendicular on a line from a point outside it, but the trick for this involves creating
a segment of which the requested perpendicular is the bisector; similarly for the
construction of a perpendicular from a given point on a line.
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well as the arithmetic of areas) is also made use of in part (B), but not the
“Pythagorean rule”.

Simplicios goes on [ed. trans. Allman 1889: 69]:

Eudemus, however, tells us in his History of Geometry, that Hippocrates
demonstrated the quadrature of the lune, not merely the lune on the side of the
square, but generally, if one might say so: if, namely, the exterior arc of the lune
be equal to a semicircle, or greater or less than it. I shall now put down literally
(κατα λεξιν) what Eudemus relates, adding only a short explanation by referring
to Euclid’s Elements, on account of the summary manner of Eudemus, who,
according to archaic custom, gives concise proofs.[12]

A number of editor-translators of the ensuing expanded Eudemos text have tried
to clean it of the additions, not always agreeing in detail on what to omit.[13]

Here I shall reproduce the translation found in [Thomas 1939: 237–253]:[14]

[Eudemus] writes thus in the second book of the History of Geometry.
C The quadratures of lunes, which seemed to belong to an uncommon class

of propositions by reason of the close relationship to the circle, were first
investigated by Hippocrates, and seemed to be set out in correct form; therefore
we shall deal with them at length and go through them. He made his starting-
point, and set out as the first of the theorems[15] useful to his purpose, that
similar segments of circles have the same ratios as the squares on their bases.
And this he proved by showing that the squares on the diameters have the same
ratios as the circles.

12 Here, Allman observes in a footnote that “Simplicius did not adhere to his intention,
or else some transcriber has added to the text” – cf. the specifications of Geoffrey Lloyd
[1987: 116], who takes it for granted that Simplicios himself is responsible.

13 [Tannery 1912/1883]; [Diels 1882] (edition only); [Allman 1889]; [Rudio 1907] (full
Simplicios text, with indication of what Ferdinand Rudio supposes not to come from
Eudemos); Thomas 1939; Becker 1936 (edition only) translated in Netz 2004].

When referring in what follows to passages due to Simplicios I have inspected the
complete text in [Bretschneider 1870] and [Rudio 1907].

14 For the present purpose it is mostly unimportant that Thomas used modernizing
terminology – for instance, replacing “the [line] from the centre” by “radius”, or that
equality δυναµει becomes equality “in square”. It can actually be debated whether the
translation “potential”, referring to the Aristotelian concept, is not more misleading, cf.
[Høyrup 1990], for which reason I shall also avoid it in my own discussion. In order to
keep present to mind that Greek had no term corresponding to “radius” I shall use instead
“semidiameter” in my own text.)

15 “Theorems” is Thomas’s invention; a literal translation would be “first of what was
useful ...”; Netz [2004: 248] has “first among the things useful ...”. On “prove” in the next
sentence, see note 24 and preceding text.
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D Having first shown this he described in what way it was possible to square
a lune whose outer circumference was a semicircle. He did this by circumscribing

about a right-angled isosceles triangle a semicircle and about the base a segment
of a circle similar to those cut off by the sides.[16] Since the segment about the

16 Simplicios states that this presupposes Elements III.33 and involves Euclid’s definition
of similarity of segments (III, def. 11) as “those in which the angles are equal to one
another” – the angles in question being the inscribed angle encompassing the
corresponding chord, that is, those of def. 8,

An angle in a segment is the angle which, when a point is taken on the
circumference of the segment and straight lines are joined from it to the
extremities of the straight line which is the base of the segment, is contained
by the straight lines so joined.

Section (A) and the appurtenant diagram shows how things can be made without reference
to Euclid. All that is needed is to complete the diagram of (C) so as to make it correspond
to the left half of the diagram of (A): that can be done by drawing the mirror images
of the shorter chords of (C) in the long chord. Their intersection is easily seen to be the
centre of the required circle. However, as argued in detail below in connection with the
more intricate case of (E), Hippocrates does not need to have the arc constructed.

Rudio (p. 49; and so evidently Bretschneider, p. 110) includes a passage which he
considers Eudemian even though it is eliminated as dubious by Thomas. It explains
(translating the same word τµηµα first as “sector”, next as “segment”) that

similar sectors are those which make up the same part of the circle, for example
half-circle to half-circle and third-circle to third-circle. Therefore similar segments
also take up the same angles. And all half-circles are indeed right, and those
of the larger are smaller than right, and indeed smaller according to how much
larger the segments are, and those of the smaller are larger, and indeed larger
according to how much smaller the segments are.

This diagram illustrates what is meant:

The inconsistent use of τµηµα and the combination of a reference to parts of circles
with the Euclidean definition of similarity suggests that the passage is not only Eudemian
but actually goes back to Hippocrates (mathematical terminology tends to become more
consistent in enduring use); but that it is contaminated – perhaps already by Eudemos,
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base is equal to the sum of those about the sides, it follows that when the part
of the triangle above the segment about the base is added to both the lune will
be equal to the triangle. Therefore the lune, having been proved equal to the
triangle, can be squared. In this way, taking a semicircle as the outer
circumference of the Lune, Hippocrates readily squared the lune.

E Next in order he assumes [an outer circumference] greater than a semicircle
[obtained by] constructing a trapezium having three sides equal to one another
while one, the greater of the parallel sides, is such that the square on it is three

times the square on each of those sides, and then comprehending the trapezium
in a circle[17] and circumscribing about its greatest side a segment similar to
those cut off from the circle by the three equal sides. That the said segment is
greater than a semicircle is clear if a diagonal is drawn in the trapezium. For
this diagonal, subtending two sides of the trapezium, must be such that the
square on it is greater than double the square on one of the remaining sides.
Therefore the square on ΒΓ is greater than double the square on either ΒΑ, ΑΓ,
and therefore also on Γ∆.[18] Therefore the square on Β∆, the greatest of the
sides of the trapezium, must be less than the sum of the squares on the diagonal
and that one of the other sides which is subtended by the said [greatest] side
together with the diagonal. For the squares on ΒΓ, Γ∆ are greater than three
times, and the square on Β∆ is equal to three times, the square on Γ∆. Therefore
the angle standing on the greatest side of the trapezium is acute. Therefore the

perhaps also or only by Simplicios.
17 Here, Simplicios inserts a proof that this can be done.

18 A proof is inserted, probably by Simplicios. The diagram letters in the preceding are
also likely to have been provided by Simplicios (Ζ at least only has a function in
Simplicios’s added proof), and Netz [2004: 249f] accordingly omits them from his
translation (cf. also his pp. 265f). In the following Nets argues extensively that
Hippocrates’s original text is likely to have been unlettered, standing in or close to the
beginning of the tradition of written Greek mathematics – which does not imply, he points
out, that the stretches of unlettered text we have are identical with Hippocrates’s original;
as Netz argues, they too were produced by Eudemos.
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segment in which it is is greater than a semicircle. And this segment is the outer
circumference of the lune.[19]

F If [the outer circumference] were less than a semicircle, Hippocrates solved
this also, using the following preliminary construction. Let there be a circle with

diameter ΑΒ and centre Κ. Let Γ∆ bisect ΒΚ at right angles; and let the straight
line ΕΧ be placed between this and the circumference verging towards B so that
the square on it is one-and-a-half times the square on one of the radii.[20] Let
ΕΗ be drawn parallel to ΑΒ, and from Κ let [straight lines] be drawn joining
Ε and Ζ. Let the straight line [ΚΖ] joined to Ζ and produced meet ΕΗ at Η, and
again let [straight lines] be drawn from Β joining Ζ and Η. It is then manifest
that ΕΖ produced will pass through Β – for by hypothesis EZ verges towards
Β – and ΒΗ will be equal to ΕΚ.

This being so, I say that the trapezium ΕΚΒΗ can be comprehended in a
circle.

19 Simplicios here observes that Eudemos omits the actual proof of the squaring of the
lune. It follows from (Β∆) = 3 (ΒΑ), via the corresponding equality involving the
appurtenant segments, and some area arithmetic.

20 [Thomas 1939: 244 n. a] points out that this is the first example of a verging construction
we know about in Greek geometry. He also observes that the problem solved is one which
could be solved means of an application of an area with excess, which he believes on
the basis of an unreferenced claim in Proclos’s commentary to Elements I) to be a
Pythagorean discovery (419:16, trans. [Morrow 1970: 332]); however, Proclos’s “ancient
discoveries of the Pythagorean muse”, even if they should be true, does not exclude a
discovery by post-Hippocratean Pythagoreans (Archytas, for one, was Plato’s
contemporary; Theodoros, traditionally accepted to be a Pythagorean because Iamblichos
makes him one, was slightly older but still younger than Hippocrates).

Actually the method was known to Old Babylonian calculators (under the guise of
finding the sides of a rectangle from their sum and the area). In any case, application
of areas under any guise is not the procedure used by Hippocrates as reported by
Eudemos.

As to the time when this inherited knowledge was adopted/adapted into Greek
mathematical theory, the scant evidence we have points to the late fifth century BCE, the
epoch of Theodoros; see [Høyrup 2001: 109].
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G Next let a segment of a circle be circumscribed about the triangle ΕΖΗ; then
clearly each of the segments on ΕΖ, ΖΗ will be similar to the segments on ΕΚ,
ΚΒ, ΒΗ.

This being so, the lune so formed, whose outer circumference is ΕΚΒΗ, will
be equal to the rectilineal figure composed of the three triangles ΒΖΗ, ΒΖΚ, ΕΚΖ.
For the segments cut off from the rectilineal figure, inside the lune, by the straight
lines ΕΖ, ΖΗ are (together) equal to the segments outside the rectilineal figure
cut off by ΕΚ, ΚΒ, ΒΗ. For each of the inner segments is one-and-a-half times
each of the outer, because, by hypothesis, the square on ΕΖ is one-and-a-half
times the square on the radius, that is, the square on ΕΚ or ΚΒ or ΒΗ. Inasmuch
then as the lune is made up of the three segments and the rectilineal figure less

the two segments – the rectilineal figure including the two segments but not
the three – while the sum of the two segments is equal to the sum of the three,
it follows that the lune is equal to the rectilineal figure.

H That this lune has its outer circumference less than a semicircle, he proves
by means of the angle ΕΚΗ in the outer segment being obtuse. And that the angle
ΕΚΗ is obtuse, he proves thus.

Since ΕΖ2 = 3/2ΕΚ2

and ΚΒ2 > 2ΒΖ2,[21]

it is manifest that ΕΚ2 > 2ΚΖ2.
Therefore ΕΖ2 > ΕΚ2 + ΚΖ2.

The angle at K is therefore obtuse, so that the segment in which it is is less than
a semicircle.

I Thus Hippocrates squared every lune, seeing that [he squared] not only the
lune which has for its outer circumference a semicircle, but also the lune in which
the outer circumference is greater, and that in which it is less, than a
semicircle.[22]

J But he also squared a lune and a circle together in the following manner.
Let there be two circles with K as centre, such that the square on the diameter
of the outer is six times the square on the diameter of the inner. Let a [regular]

21 As Thomas points out, no proof is given for this. However, it is easily seen that if ΚΒ2 =
2ΒΖ2, then angle ΚΖΒ would be right, and ΖΕ would be equal to ΒΖ, already smaller than
ΚΒ. If ΚΒ2 < 2ΒΖ2, ΖΕ would be even smaller. To see this we only need the relation
between side and diagonal in a square, and if Hippocrates, Eudemos and Simplicios did
not consider it obvious from the diagram they might still see no need for a specified
argument.

Heath [1921: I, 195] offers a much more sophisticated proof, which we may safely
discard as reconstruction of what was on Hippocrates’s mind.

22 Netz [2004: 252] suspects section (I) to be due to Simplicios. In any case Simplicios goes
on after (I) and before (J) (translated from [Rudio 2007: 69]:

But it was not exclusively over the side of a square, as Alexander has related,
and [Hippocrates] did not at all undertake to square the lune over the side of
the hexagon, as Alexander also asserts.
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hexagon ΑΒΓ∆ΕΖ be inscribed in the inner circle, and let ΚΑ, ΚΒ, ΚΓ be joined
from the centre and produced as far as the circumference of the outer circle, and
let ΚΑ, ΚΒ , ΚΓ be joined. Then it is clear that ΗΘ, ΘΙ are sides of a [regular]
hexagon inscribed in the outer circle. About ΗΙ let a segment be circumscribed
similar to the segment cut off by ΗΘ. Since then ΗΙ2 = 3ΘΗ2 (for the square on
the line subtended by two sides of the hexagon, together with the square on one
other side, is equal, since they form a right angle in the semicircle, to the square
on the diameter, and the square on the diameter is four times the side of the
hexagon, the diameter being twice the side in length and so four times as great
in square), and ΘΗ2 =6ΑΒ2, it is manifest that the segment circumscribed about
ΗΙ is equal to the segments cut off from the outer circle by ΗΘ, ΘΙ, together with
the segments cut off from the inner circle by all the sides of the hexagon. For
ΗΙ2 = 3ΗΘ2, and ΘΙ2 = ΗΘ2, while ΘΙ2 and ΗΘ2 are each equal to the sum of the
squares on the six sides of the inner hexagonal, since, by hypothesis, the diameter
of the outer circle is six times that of the inner. Therefore the lune ΗΘΙ is smaller
than the triangle ΗΘΙ by the segments taken away from the inner circle by the
sides of the hexagon. For the segment on ΗΙ is equal to the sum of the segments
on ΗΘ, ΘΙ and those taken away by the hexagon. Therefore the segments [on]
ΗΘ, ΘΙ are less than the segment about ΗΙ by the segments taken away by the
hexagon. If to both sides there is added the part of the triangle which is above
the segment about ΗΙ, out of this and the segment about HI will be formed the
triangle, while out of the latter and the segments [on] ΗΘ, ΘΙ will be formed
the lune. Therefore the lune will be less than the triangle by the segments taken
away by the hexagon. For the lune and the segments taken away by the hexagon
are equal to the triangle. When the hexagon is added to both sides, this triangle
and the hexagon will be equal to the aforesaid lune and to the inner circle. If
then the aforementioned rectilineal figures can be squared, so also can the circle
with the lune.[23]

23 Netz [2004: 283 n. 47] sees the structure “if then ..., so ...” as belonging in “a context
in which it is not self-evident that all rectilinear figures can be squared”, contrary to the
second part of my argument in note 26. But Netz’s reading is far from compulsory. The
standard formulation of prayers to the gods in the Iliad runs, not “Do Z in my favour”
but “If I have done X for you [implying: which you cannot deny], then do Z in my
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Section (C) seems to claim that Hippocrates proved “that the squares on the
diameters have the same ratios as the circles” – a claim that was accepted by
Heath, as we saw above in the initial quotation. Unfortunately we do not know
which kind of proof is referred to, and it is thus for good reasons that Netz [2004:
249] translates the initial words of section (D) “This being shown to his
satisfaction” (while admitting that the Greek αυτω may also just mean “by him”).

Actually, however, the verb translated first “proved” and then “showing”
(δεικνυµι) in the end of (C) may just as well mean “point out” or “explain”.[24]

When it reappears in the beginning of (D), the verb refers to the assertion about
similar segments (the immediate presupposition for what follows) rather than
to the proportionality of circular areas to the squares on the diameters. The choice
of the translation “proving” is another case of circular reasoning taking it for
granted that Hippocrates, as a Greek mathematician, followed the ideals of later
Greek mathematics. So is evidently the insertion of a “theorem”, cf. note 15.

The proof in (D) is strangely mutilated: “Since the segment about the base
is equal to the sum of those about the sides ...” – but this is not even intuitively
obvious from the diagram accompanying this section unless it is pointed out
that the segments stand on the sides of a right isosceles triangle; the diagram
of section (A) accompanied by the definition of similarity by “parts” of the circle
(not by angles) is definitely more suited, since here it is obvious that we deal
with half-circles. It looks as if the whole section (D) is a re-elaboration of what
is reported from Alexander in (A) – a re-elaboration that has deleted some of
the traces of the underlying thinking.

Be that as it may, it is clear that the basis for the argument in D is the same
as in (A) – “Pythagorean rule” and proportionality of similar areas to the square
on a characteristic linear dimension.[25]

(E) is not quite as simple. At first, Hippocrates constructs a trapezium with

favour” – precisely the same rhetorical enthymeme. By taking their starting point with
already mature rhetoric and already mature mathematics, Apostolos Doxiadis and Michalis
Sialaros [2013] overlook this early influence of the eristic-rhetorical ambiance on the
formation of the mathematical language.

24 This fits to the full Netz’s further conclusion [2004: 275], that “Hippocrates left this as
a starting point, without providing a mathematical proof”

25 Simplicios has an added reference to Elements I.47, the “Pythagorean theorem”. It is
possible that this is no mere addition (one of those promised in the quotation before note
12) but indeed a rewriting of a reference to the rule in the Eudemian text – cf. the same
note.
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sides s, s, s and √(3s2). He does not explain how to do it, but the necessary tools
were, firstly, the Pythagorean rule; secondly, the construction of a
perpendicular – as already mentioned a recent discovery due to Oinopides of
Chios.

We do not know how Hippocrates performed the construction, but the
diagram shows a possible way using exactly these tools. Firstly, the long side
is constructed from the short side, possibly by means of repeated application
of the Pythagorean rule (but a mean proportion between s and 3s is not to be
excluded[26]). This long side is drawn as PQ. Symmetrically around its mid-point
the short side is marked off as RS. In R and S, perpendiculars to PQ are raised,

and with semidiameter equal to RS and centres P and Q circles are drawn, which
meet the perpendiculars in T and U. Because RT and SU are parallel, TU is equal
to RS, whence also to PT and QU.

26 Hippocrates is also supposed to be the one who reduced the doubling of the cube to
the finding of two mean proportional; if we accept that we may safely assume that he
knew how to find a single mean proportional. H. G. Zeuthen [1896: 84] has his doubts,
but afterwards nobody, it seems. The source for the ascription is Proclos’s Commentary

213.2–9 [trans. Morrow 1970:167], and Proclos’s formulation is indeed not quite limpid.
But internal evidence in the text also provides evidence that Hippocrates knew to construct
a mean proportional. When he has shown that a lune equals an isosceles trapezium he
stops. Transforming an isosceles trapezium into a rectangle by a simple cut-and-paste
operation is unproblematic – but transforming the rectangle into a square asks exactly
for the finding of the mean proportional between the sides, which Hippocrates must hence
have considered a matter of course. In later times, given that any polygon can be
transformed into a square (Elements II.14), the meaning of “quadrature” was admittedly
generalized – but the word must have stated its career with the literal sense (which is
also that used in (A) and (B)), metaphors are by necessity secondary.
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We do not need to worry about the problem of parallels (meaning “along
each other”). At the time nobody did – as we have seen, Aristotle mentions
circular reasoning about them a century later, which shows that they were only
discovered to present a difficulty well after Hippocrates’s times. We have thus
constructed the trapezium asked for.

Next we need to circumscribe a circle about the trapezium. Even this seems
to be just stated by Hippocrates – at least, there is no trace of an argument in
the Eudemos text used by Simplicios, who constructs a proof of his own – text
in [Rudio 1907: 52–55]). A simpler feasibility proof (so simple that Hippocrates
may have seen it intuitively) can be made from the above diagram: We draw
the perpendicular bisectors to PT and QU (Oinopides again), which meet in Z

(if we need evidence that they are not parallel we observe that angles PTU and
QUT are obtuse, since TM<PN, UM<QN). Since Z is equidistant from P and T,
and from Q and U, and for symmetry reasons located on the perpendicular
bisector NM of PQ, all four points P, T, U and Q are equidistant from Z, and
thus located on the same circle.[27]

The next step is to construct a moon. Now we may look at Simplicios’s
diagram (more complicated than needed for our purpose, since Simplicios used
it in his above-mentioned Euclid-based proof that the trapezium is cyclic – text
in [Rudio 1907: 52–55]). Above Β∆ a segment similar to those over the shorter
sides ΒΑ, ΑΓ and Γ∆ is drawn. Once more, no explanation is given how this
is to be done; but if we forget about the Euclidean definition of similarity of

27 Giora Hon and Bernard Goldstein [2008] argue at length that the ancient Greeks had
no concept of symmetry because συµµετρια does not mean “symmetry” (while pretending
that they argue at the level of concepts and not of words). Whoever has looked at an
ancient Greek temple facade (be it on location or on a photo) will be aware that this view
can be safely disregarded.
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segments, it is easy – what we need is to draw through Β and ∆ a circle whose
semidiameter is √3 times ΒΕ = ΑΕ = ΓΕ = ∆Ε, the radii of the smaller segments.
As a matter of fact, however, the argument does not even require that we know
how to perform the construction. Hippocrates simply shows in what follows
that the lune between the outer circle and this arc, in whatever way it may have

been made, can be squared. No worse than applying unawares the axiom of choice
as done in much modern mathematics, and done for that matter by Euclid (“let
a point D be taken at random on the other side of the straight line AB ...”/“...
τυχον σεµειον ...”, Elements I.12).

The squarability of the lune is argued as follows: the area of the larger
segment (still, in whatever way it may have been made) is three times each of the
smaller segments (once more a consequence of the proportionality of areas to
the squares on a characteristic linear extension); the usual kind of area arithmetic
then shows the lune contained between the circle and the perimeter of the larger
segment to equal the trapezium. As Simplicios observes [ed. trans. Rudio 1907:
56f], this is not even made explicit in the Eudemian text, and Simplicios
reasonably believes Hippocrates to have found it too simple to be worth an
explanation; after all, the principle was already explained in (D).

This was given as an example of a lune contained by a circumference larger
than the semicircle. That it really is larger is argued thus by Hippocrates: he takes
it for granted that the angle ΒΑΓ is obtuse (we already saw why this is obvious
from the hypothetical construction of the trapezium). Therefore ΒΓ must be larger
in square than the sum of the squares on ΒΑ and ΑΓ.

Details imminently. But first we may think of a passage in Plato’s Republic

(510C, trans. [Shorey 1930: II. 111]):

For I think you are aware that students of geometry and reckoning and such
subjects first postulate the odd and the even and the various figures and three
kinds of angles and other things akin to these in each branch of science, regard
them as known, and, treating them as absolute assumptions, do not deign to
render any further account of them to themselves or others, taking it for granted
that they are obvious to everybody.

The speaker is Socrates, but since the passage comes from Book VI is has nothing
to do with what the historical Socrates had said (in the case of Book I there is
at least the possibility that it reflects Socrates’s own opinions and perhaps his
words). It is still possible that Plato tries to adapt the argument to what could
have been said in Socrates’s time. In any case, between two and five decades
after Hippocrates wrote his treatise, it seems that obtuse, right and acute angles
were still primitive concepts with an axiom-like status.
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This goes beyond how Old Babylonian practical geometers would think. They
certainly knew to distinguish “good” from “bad” corners – the former were
essential in area calculations, the latter were unimportant and could be distorted
ad libitum in field plans (cf. for example [Høyrup 2002: 103–105]. But angles as
measurable quantities were known and used by Greek practical geometers (in
casu, architects) in the sixth century BCE, as evident from Eupalinos’s tunnel on
Samos: having to avoid soft rock, Eupalinos at a certain point has to turn some
20° to the right; after excavating for a while in this new direction, he turns twice
as much to the left, and goes on just as long in this new direction, and then turns
20° to the left (this at least is the unmistakable ideal planning; further
complications of the rock has led to some deviations) – see [Kienast 1995:
142–145], and this drawing, based on Kienast’s diagram but with added dotted
lines and arrow indicating the digging direction:[28]

Back to Hippocrates, and perhaps to something close to his own words. If

28 Weighing all available evidence (pp. 177–182), Kienast concludes that the tunnel must
be dated between ca 550 and ca 530 BCE.This is too early to have received inspiration
from any doctrines developed by Pythagoras after he left Samos for Croton around 530
BCE (even if we decide to disregard the strong arguments against Pythagoras being a
“mathematician” offered by [Junge 1907] and [Burkert 1962]). Moreover, the angle
geometry involved has nothing to do with the kind of mathematical discoveries ascribed
to Pythagoras by late sources (early sources ascribe none); if anything, it shows some
affinity with what Proclos ascribes in the “catalogue of geometers” at a thousand years’
distance to Thales [trans. Morrow 1970: 124, 195, 233, 275]. Most informative is the
attribution of Elements I.26 to Thales (Proclos, Commentary 275.14–16, trans. [Morrow 1970:
275)],

If two triangles have the two angles equal to two angles respectively, and one
side equal to one side, namely, either the side adjoining the equal angles, or that
subtending one of the equal angles, they will also have the remaining sides equal
to the remaining sides and the remaining angle to the remaining angle,

– not because the writer (whether Eudemos or a later redactor) knows about any written
source or oral tradition telling this but because the method by which he is reported to
have determined the distance of ships at sea shows that Thales must have used it.

Great names are fly paper, they attract attribution of great feats. In the same vein,
Thales was supposed to have predicted a solar eclipse, Anaxagoras the fall of a meteorite,
and Anaximander an earthquake – see [Longrigg 1976: 296, 298 n. 11]. All we can conclude
is thus:
– Firstly, that some Greeks used angles well before Hippocrates for practical distance

measurement (measured how we do not know – “degrees” can be safely ruled out);
– and secondly, that Eudemos or his redactor had a tendency to claim a background

in proved theory for practical methods.
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angle ΒΑΓ had been right, then ΒΓ would have equalled ΒΑ and ΑΓ, all three
in square. This is once again the Pythagorean rule. Now, since angle ΒΑΓ is
obtuse, it must be larger (since it is not said by how much, this is not the
“extended Pythagorean theorem” of Elements II.12, which is not needed).
Therefore, the square on ΒΓ exceeds the double of the squares on ΒΑ, ΑΓ and
Γ∆ taken singly. But the sum of these equals the square on Β∆. Therefore, the
sum of the squares on ΒΓ, Γ∆ and Β∆ falls short of the sum of the squares on
ΒΓ and Γ∆, and in consequence angle ΒΓ∆ is acute. This implies, it is stated, that
the lower arc of the circumscribed circle (not drawn) is smaller than a semicircle,
whence the upper arc ΒΑΓ∆ (a lune on which has just been squared) must be
larger than a semicircle, as claimed.

What is the foundation for the latter step? We might appeal to Elements III.20,

In a circle the angle at the centre is double of the angle at the circumference,
when the angles have the same circumference as base,

whose proof asks for nothing but a bit of arithmetic (this time concerning angles)
once we know the sum of the angles of a triangle.

But less can do. All we need for Hippocrates’s conclusion is that the
(“circumferential” or “inscribed”) angle spanned by a diameter seen from a point

on the circumference is right. That was old knowledge, and intuitively obvious
if we complete the triangle corresponding to the angle as a rectangle and draw
the second diagonal. For symmetry reasons it is obvious that the two diagonals
meet at a point which is equidistant from the four corners, and thus at the centre
of the circumscribed circle, of which both are diameters. This is clearly used
(without being made explicit) in the Old Babylonian text BM 85194, in two
problems that determine: first the chord from a circular circumference (which,
via a factor, is equivalent to the diameter) and the arrow; next the arrow from
the circumference and the chord – see [Høyrup 2002: 272–274]. There is no need
for transmission of this insight from the Bronze Age – rediscovery is not difficult.
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Once we know this, it is in any case clear that an acute angle spans less than
the semicircle, as asserted.

(F) is more difficult to follow, and makes it evident that Euclid was not the
first Greek mathematicians to delete the traces of his analysis, presenting only
a synthesis which makes us admire the genius of the geometer but prevents us
from knowing how he got his ideas (cf. also what was said about the relation
between sections (A) and (D) before note 25).[29] Simplicios adds elaborate
explanations of relatively trivial matters; the failing elucidation of an intricate
point (paragraph after note 31) left unexplained by Eudemos makes us doubt
the depth of his mathematical understanding.

The essential circle in the argument is the one containing the arc ΕΚΒΗ, with
the three chords ΕΚ, ΚΒ and ΒΗ being equal (as are also the appurtenant
segments). But in order to determine the adequate size of these Hippocrates has
to start with another (semi-)circle ΚΑΕΒ, with centre Κ and semidiameter ΑΚ =
ΚΒ. In Γ, mid-point between Κ and Β, the perpendicular Γ∆ is raised. Now a
length x is constructed such that the square on x is 11/2 times the square on the
semidiameter ΑΚ – that is, x is the mean proportional between ΑΓ and ΑΚ.[30]

Next a line is drawn through Β and cutting Γ∆ in Ζ and the circular
circumference in Ε, in such a way that ΖΕ equals x. As pointed out by Thomas
(p. 244 n. a), this is a problem of the second degree, which can be solved by ruler
and compass – but apparently not by methods at Hippocrates’s disposal. Instead
he used a verging construction, a “mechanical” procedure where x is marked
from one end of a ruler, and this end is moved along the circumference while
the ruler is kept in contact with Β, until the marked distance falls on the point
Ζ. After the creation of the machinery of Elements II.1–10, the so-called “geometric
algebra”, verging constructions were no longer used for problems that could

29 Speaking of Hippocrates’s “analysis” does not imply that he should already have had
an explicit notion of analysis versus synthesis; even Aristotle’s remark in the Nicomachean

Ethics 1112b20–21 (trans. W. D. Ross in [Aristotle, Works 9],
the person who deliberates seems to investigate and analyse [about means to
achieve an end] in the way described as though he were analysing a geometrical
construction

does not imply more than a practice of making an analysis (a preliminary diagram) as
the first step when trying to elucidate a geometric problem, and is in need of no
metamathematical conceptualization.

30 Once again, it can be constructed either directly as a mean proportional or via repeated
use of the Pythagorean theorem. The formulation “1½ times the square” points toward
the latter possibility but hardly proves it.
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be solved by ruler and compass, and they were reserved for “higher” problems;
but it appears that during some earlier epoch they had been acceptable – cf.
[Zeuthen 1896: 80–82]. Hippocrates in any case makes use of one.

Once Ζ if found, simpler steps follow. An isosceles trapezium ΕΚΒΗΕ is
constructed, whose diagonals intersect in Ζ. That it is isosceles is neither argued
nor stated explicitly, but it follows from the fact that Ζ is located on the
perpendicular bisector of ΚΒ. “This being so”, the trapezium can be inscribed
in a circle. Simplicios gives a proof (a full page in Rudio’s translation), but we
have already seen how it follows from simple considerations, and there is no
reason to suppose that Hippocrates did, and then hid, something more complex.
Since this is the second time he performs this inscription without argument, the
possibility to inscribe an isosceles trapezium in a circle appears to have been
one of Hippocrates’s “elements”, at least in the first sense of the Proclos-
Oinopides quotation after note 2.[31]

Next a circular arc is circumscribed about ΕΖΗ, producing two segments
ΕΖ and ΖΗ. These, it is stated, are “clearly” similar to those on ΕΚ, ΚΒ and ΒΗ,
and accordingly no explanation is given by Hippocrates/Eudemos. Nor does
Simplicios tell his readers why, and we may suppose he did not know. If we
presuppose that similar segments correspond to similar inscribed angles, it is
easily seen that the segment on ΕΚ is similar to that on ΕΖ: the point Ε is located
on both circle circumferences, and the angles ΕΗΖ are ΕΗΚ are identical; but
these are the inscribed angles for the segments on ΕΖ and ΕΚ, which therefore
are similar. If Hippocrates did not know about the relation between segments

31 Actually, in the manuscript the passage translated “this being so, I say that the trapezium
ΕΚΒΗ can be comprehended in a circle” follows after the first paragraph of (G). Since
Rudio this has been supposed to be a copyist’s blunder. Netz [2004: 250, 282 n.36] argues
that the manuscript is impeccable, and that the passage represents second thoughts added
by Eudemos; if this is so, Hippocrates took the existence of the circumscribed circle to
be so evident that he did not even mention it (but it may have been shown in his diagram,
as it is in that of Simplicios).
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and inscribed angles, he must have found it evident in some other way. As
observed on p. 21, however, simple angle arithmetic combined with knowledge
of the sum of angles in a triangle leads easily to the necessary insight; this may

be another one of Hippocrates’s “elements”. Since ΕΚ and ΚΒ are radii in the
same circle, they are equal, and for symmetry reasons also equal to ΗΒ. Also
for symmetry reasons, ΕΖ is equal to ΖΗ. Moreover, ΕΖ2 = 3/2ΕΚ 2. The usual
area arithmetic now shows that the lune ΕΚΒΗΖΕ has the same area as the
polygon ΕΚΒΗΖΕ.

That this lune has its outer circumference smaller than a semicircle is argued
in (H) in a way similar to what was done in (E). No argument is given for the
crucial inequality ΚΒ2>2ΒΖ2, but as shown in note 21 this is fairly evident and
may have been considered thus by Hippocrates (which shows something about
the way he argues).

The claim in (I), whether indeed made by Eudemos or straightened by
Simplicios, is obviously not justified, at least not if we translate παντα µηνισκον
as “every lune”. We may expand the translation as “every [kind of] lune”, and
then things are not quite as bad. In any case, the passage says nothing about
what Hippocrates himself thought he had done, nor about what he ultimately
aimed at – and neither Eudemos nor Simplicios probably knew better than we
do. If Hippocrates thought he was on the way of squaring the circle, we may
think of the idea as “Hippocrates’s conjecture”, and thus put it at the same level
as Goldbach’s conjecture and the Riemann hypothesis. Yet even this would
approach circular reasoning – “since Hippocrates was a good mathematician,
he has to be judged according to the criteria by which we judge good
mathematicians”.

So, let us return to (J), which speaks more directly about what Hippocrates
is supposed to have done. Just as (D) has a clear affinity to (A), (J) is somehow
related to (B): on one hand, it builds the argument around (here two) regular
hexagons; on the other, it does not square a lune but a circle together with a
lune. The proof, once again, makes use of these principles:
– the Pythagorean rule;
– the basic geometry of the regular hexagon;
– the proportionality of similar areas to the squares on a characteristic linear

extension;
– and simple arithmetic of areas.
It thus teaches us nothing new.
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III. Hippocrates’s “elements” and arguments

Simplicios did not just add Euclidean references and Euclidean proofs to
Eudemos’s text, cf. note 12. It is therefore not automatically clear which
arguments come from Simplicios and which from Eudemos[32] – and, behind
these, what from Eudemos and what perhaps from Hippocrates’s original text.
We can probably trust Simplicios when he only speaks of adding and not of
removing (except perhaps when this was implied in some reshaping of an
argument); it is less certain that Eudemos’s text removes nothing.

With this proviso, we may try to sum up what we have come to recognize
as Hippocratean “elements” in either the first or the second sense (the text does
not allow us to distinguish, in particular because many are implicit only in
Eudemos’s report); in Ken Saito’s terminology (e.g., [Saito 1997]), we shall try
to identify Hippocrates’s “toolbox”. Next, we may say something about the style
of his arguments.

First of all, we notice that there is no reason to distinguish Alexander’s
Hippocrates and Eudemos’s Hippocrates on this account. Evidently, Eudemos’s
version is more extensive, and accordingly more informative, but that is the only
difference.

Ever-recurrent are:
– the Pythagorean rule;
– the proportionality of similar areas to the squares on a characteristic linear

extension;
– and simple arithmetic of areas.
To this comes, in (B) and (J), some basic properties of the regular hexagon, and
in (A) and (D) basic properties of the square and the isosceles right triangle.
These, as well as the three preceding points, were known since well above a
millennium in Near Eastern practical and scribal geometry.

Also known, but perhaps reinvented in a new context where quantified angles
were made use of (a context which we have seen reflected in the Eupalinos
tunnel), is knowledge that the inscribed angle corresponding to a circular

32 Not automatically, but mostly with little doubt when a simple linguistic observation
is taken into account [Becker 1936: 415–417; Netz 2004: 255]: passages that indubitably
come from Eudemos speak (e.g.) of “the line on AB”, as Aristotle would do; text which
indubitably comes from Simplicios’s hand speaks of “the line AB”. That allows us to
ascribe most dubious passages to one or the other with fair certainty (note 22 deals with
an exception, a passage in which no lettered lines are spoken about).
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diameter is right.
Even more recent in origin is the construction of bisecting perpendiculars

which seems to inhere in the construction of various symmetric trapezia. To draw
a perpendicular from a point on or outside a given line could be done by means
of a set square, as had been done before. But for the bisecting perpendicular
Oinopides’s construction is needed, unless a foldable string be used.[33]

Time and again, the Pythagorean rule and the right angle enter in arguments
of type “more than” or “less than”. There is not trace of the “extended
Pythagorean theorem” (Elements II.12–13), but repeatedly it is concluded that
if the sum of the squares on two sides of a triangle exceeds the square on the
third side, then the angle they enclose is obtuse; similarly, if an inscribed angle
is obtuse, then the enclosing segment is smaller that a semicircle. There are some
indications in the text that the constancy of inscribed angles containing a given
segment is also used to determine the similarity of segments in circles with
different diameters, but since the principle is never appealed to explicitly it is
not excluded that Hippocrates had a different argument in mind.

To this we may add the possibility to construct isosceles trapezia from their
sides and the insight that these can be inscribed in circles; but both follow from
the preceding combined with considerations of symmetry (and the possibility
to use a compass).

And finally, the verging technique, unexplained and therefore almost certainly
meant to be performed mechanically with a ruler as shown in the figure; and
possibly but not necessarily the construction of a mean proportional, cf. note
26.

All in all, a very restricted set of tools.

We may confront it with the hypothetical description of the contents of
Hippocrates’s Elements (supposed to be a coherent treatise) presented in [Bulmer-
Thomas 1971: 414–416] – basically, all of Euclid’s Elements, excepted books V
and X. Bulmer-Thomas bases himself on two premises. Firstly, everything
ascribed to (often undated) Pythagoreans in late sources is supposed to be really
Pythagorean, created moreover by the first generation of µαθηµατικοι and
therefore known by Hippocrates.[34] Secondly, if Hippocrates does something

33 The fact that the method is never explained might reflect that Hippocrates saw the
construction of the perpendicular bisector in itself as a primary operation, not to be argued
from other knowledge, which could be of one or the other kind. Might.

34 For example, the ascription of the application of areas with excess and deficiency to
the “Pythagorean muse” (see note 20) leads to the claim that the whole of Elements II
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which could be justified by use of Euclid’s proposition Z, and Euclid proves this
by means of propositions X and Y, then these three are supposed all to have
been known by Hippocrates and included in his version of the Elements.

The alternative, which allows us to see Hippocrates’s toolbox as here
identified as the likely core of his collection of “elements” (whether a systematic
treatise or not) is to think of him as arguing from the “locally obvious” – a notion
I have suggested in [Høyrup 2019] and explained as “presuppositions which
the interlocutor – or, in case of writing, the imagined or ‘model’ reader – will
accept as obvious”. As an illustrative example (fitting because we do not find
it an obvious starting point for a mathematical argument) I chose there the use
of the rule of three in Italian late medieval abbacus mathematics. We will find
that the rule

If some computation was said to us in which three things are proposed, then
we shall multiply the thing that we want to know with the one which is not
of the same (kind), and divide in the other[35]

is in itself in need of explanation, and we will readily find one using first-degree
algebra or, if we want to stay traditional, basic proportion theory. Many abbacus
authors, instead, would solve other problems involving proportionality
(composite interest, expansion or reduction of fractions, etc.) via an appeal to
the rule of three.[36] The reason that the opaque rule (opaque because the
intermediate step has no concrete meaning) could remain in use for centuries
(not only two centuries but at least 17, if we take the Indian origin in account,
see [Høyrup 2012]) was that it was used so often first in the abbacus school and
then in practical computational life (and before that, in Indian and Arabic
commercial practice) that it was accepted as obvious by everybody in the
environment. “Proceed, and faith will come to you”, as d’Alembert is supposed
to have said – we might indeed have taken pre-Cauchy analysis as an example
of the “locally obvious” instead of the rule of three.

We should remember that Hippocrates worked only half a generation or
so after Oinopides, and thus when something as simple as the erection of a

(as well as Elements I) were substantially included in Hippocrates’s treatise. In particular,
since Hippocrates’s verging construction can be replaced by a trick based on Elements II.6,
this must be how Hippocrates did it (viciously hiding his knowledge by referring instead
to the verging).
35 My literal translation from [Arrighi 1989: 9]. With no or at most minimal variations,
this formulation from ca 1300 remained in use for two centuries.

36 [Høyrup 2019: 27–29] goes through a specific example in detail.
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perpendicular by means of ruler and compass was a recent discovery. He may
well, as suggested by Netz [2004: 246f] have been the first to write about
geometry; at least he will have been one of the very first. Before him, there will
have been no time to develop anything like an axiomatic framework (which
cannot exist without a persistent support, that is, writing sufficiently developed
to carry a logical argument). As we may observe, there is not the slightest
reference to a definition in the Eudemos text,[37] all arguments (when they are
there at all and not tacitly omitted) are single-level, directly based on the tools
from the box listed above.

Hippocrates need not have used all the tools he was familiar with in his work
on the lunes – here as mostly, the absence of evidence should not be mistaken
for evidence of absence; if he was the one who showed the equivalence of the
doubling of a cube and the finding of two mean proportionals,[38] something
more will have been needed. Beyond that, however, we have no means to
substantiate any guess about what else he knew and would use on other
occasions. Even his verging construction does not prove definitively that he was
ignorant of the application of areas with deficiency and excess – he may have
used the verging construction not because he was ignorant of alternatives but
because he considered the verging legitimate, and perhaps because it fell
naturally in continuation of his analysis.

After so many pages, the reader may sigh, parturiunt montes, nascetur ridiculus

mus, “the mountains are in labour, a ridiculous mouse is born”[39] – but after
all, this mouse is the earliest evidence we have of Greek theoretical geometry,
much more informative than Neoplatonic and Neopythagorean fables about
Pythagoras. It also makes much more sense than these and the narratives about
Greek mathematics having sprung like Athena full-clad in armour from Zeus’s
head;[40] it suggests how locally argued mathematics, once it came into writing

37 Unless, of course, we count the explanation of what is meant by “similar segments”
and follow Rudio’s acceptance of this dubious passage as Eudemian – cf. note 11. Even
then the formulation looks more like that of a commentator than as something said by
Hippocrates himself.

38 The work on lunes offers so far unnoticed support for this ascription. In either version
the problem of squaring a circle is reduced to that of squaring a lune. Whereas we have
no traces of axiomatics in Hippocrates’s text it seems obvious that he tried to approach
difficult problems through transformation into something different and perhaps more
approachable.

39 Horace, The Art of Poetry 139, [ed. Nisard 1869: 174].

40 A passage in [Allman 1889: 63f] comes to mind:
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and was practised with critical questioning, over a century gave rise to the
intention to produce an axiomatic system as reflected in Aristotle’s Posterior

analytic and as realized by Euclid – becoming in the end an ideology inducing
Simplicios and so many later historians to believe that even Hippocrates had
made that kind of mathematics, rendered unfortunately by Eudemos “according
to archaic custom” with “concise proofs”; cf. [Høyrup 2019].

IV. Alexander and Eudemos

Simplicios first relates what Alexander of Aphrodisias had reported about
Hippocrates’s work on lunes, and then what Eudemos has to say – making it
shine through (see the quotation on p. 10) that this is the better source, and that
Simplicios himself is thus better informed than Alexander (they are, after all,
competing commentators on the same Aristotelian passage). Just after (J), what
shines through in the beginning is made explicit (translated from [Rudio 1907:
75f]):

But for knowing that which concerns Hippocrates of Chios, higher standing must
be given to Eudemos, since he was closer to him in time and had listened to
Aristotle.[41]

As it is obvious from the above, however, what Alexander offers is not a
simpler or a distorted version of what can be read in Eudemos. The two texts
are different and independent of each other, though clearly dealing with the same

Hankel expresses surprise at the fact that this oldest fragment of Greek
geometry – 150 years older than Euclid’s Elements – already bears that character,
typically fixed by the latter, which is so peculiar to the geometry of the Greeks.

Fancy a naturalist finding a fragment of the skeleton of some animal which
had become extinct, but of which there were living representatives in a higher
state of development; and fancy him improving the portion of the skeleton in
his hands by making additions to it, so that it might be more like the skeleton
of the living animal; then fancy other naturalists examining the improved
fragment with so little attention as to exclaim : “Dear me! how strange it is that
the two should be so perfectly alike!”.

Hermann Hankel wrote his history of ancient and medieval mathematics in [1874], relying
on Bretschneider and therefore not distinguishing between the Simplicios- and the
Eudemos-layers of the text. But Allman’s mockery has retained much of its validity in
later times.
41 That Eudemos had listened to Aristotle is obviously only relevant for understanding
that passage in Aristotle which both Alexander and Simplicios comment upon (the
question discussed in [Lloyd 1987]), not for deciding which version of Hippocrates’s work
is genuine.
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topic and using the same conceptual tools. The difference between them should
be informative.

The print world was (and still is) familiar with “first” and “second, revised
and augmented” editions; in the digital world we have the experience of
“preliminary versions” which end up in odd corners on the web from where
the author has no possibility to remove them.

Neither of these was the situation of Hippocrates; his was the world of
incipient manuscript culture, where any preliminary copy of a treatise lent to
somebody might start to circulate on its own as long as somebody found it
interesting enough to copy it or have it copied. Later in Greco-Roman Antiquity,
where booksellers made it possible to buy more or less standardized versions,
private copying still remained important – not least for scientific and
philosophical books, where the public was too restricted to make it worthwhile
for a bookseller to keep a master copy [Blanck 2008: 161–165]. However, the
relation between the two versions of Hippocrates’s work on the lunes does not
suggest that them to be simply descendants of divergent versions of the same
text.

We may recall that Hippocrates is supposed to have taught a school, a group
of young people “around” him. In this connection, it may not be totally frivolous
to think: firstly, of the relation between Plato’s esoteric and exoteric teachings,
of which the latter may only have reached the written stage through indirect
reflections in the exoteric dialogues and through the hands of followers, for
example in the “Seventh Letter” (cf. [Gaiser 1968: 3 and passim]) – not to speak
of the occasional polemics of Aristotle, the run-away follower; and secondly,
of the relation between the Aristotelian πραγµατεια, the systematic treatises
reflecting the school lectures, and the writings directed at a larger public (lost,
except for fragments).

From a later time, but closer in genre, we should notice that Galen (trans.
P. E. Easterling, in [Easterling & Know 1985: 20]

ruefully describes how the working notes he gave his pupils for their private
use were subjected to wholesale distortion and alteration and circulated
commercially as genuine works of the master

There is no reason to suspect Hippocrates of having taught in his school a
doctrine different in character from what went into a published book; but any
teacher who has written a book on the basis of lectures made earlier on will know
that the two become different. It could well be that what Alexander reports is
an early version of the investigation of the lunes (perhaps based on what was
written down by listeners, perhaps on notes prepared by Hippocrates himself),
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while Eudemos has access to a revised and much expanded version published
afterwards.[42] Also possible but wholly unlikely (for one thing in view of the
relation between (A) and (D) as discussed on p. 16) is the opposite order.

In any case, the existence of two parallel versions of the same investigation
may be another trace of Hippocrates having had a school “around” him – an
indirect trace, certainly, but this time a trace of a school teaching geometry and
not only astronomy.
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